Clinical Sites h1 >
Duke University Medical Center
Durham, North Carolina 27710-1000
Recruiting
6730: Lysosomal Disease Network Longitudinal Study of Fabry Disease
This proposal aims to study the natural history and ERT effect on cardiac and vascular tissue in Fabry disease using unbiased quantitative validated morphometric approaches with functional and imaging correlations. These studies will substantially improve our understanding of the pathophysiology of cardiovascular and renal complications in Fabry and can introduce new approaches to quantify treatment response in cardiomyocytes and arteriol smooth muscle cells, with potential application in clinical trials and at the bedside. In addition to these histomorphometric studies, we propose to study autonomic dysfunction, a common complication in FD patients that is not well characterized, and the effect of ERT on this complication. The novel nature of this study lies in the analysis of tissues samples in a heretofore unused method that correlates tissue analysis with medical data to make determinations of kidney, cardiac, and skin tissue damage in Fabry disease.
The Lundquist Institute
Torrance, California 90502
Recruiting
6730: Lysosomal Disease Network Longitudinal Study of Fabry Disease
This proposal aims to study the natural history and ERT effect on cardiac and vascular tissue in Fabry disease using unbiased quantitative validated morphometric approaches with functional and imaging correlations. These studies will substantially improve our understanding of the pathophysiology of cardiovascular and renal complications in Fabry and can introduce new approaches to quantify treatment response in cardiomyocytes and arteriol smooth muscle cells, with potential application in clinical trials and at the bedside. In addition to these histomorphometric studies, we propose to study autonomic dysfunction, a common complication in FD patients that is not well characterized, and the effect of ERT on this complication. The novel nature of this study lies in the analysis of tissues samples in a heretofore unused method that correlates tissue analysis with medical data to make determinations of kidney, cardiac, and skin tissue damage in Fabry disease.
University of Minnesota - Administrative Core
Minneapolis, Minnesota 55455
Recruiting
6730: Lysosomal Disease Network Longitudinal Study of Fabry Disease
This proposal aims to study the natural history and ERT effect on cardiac and vascular tissue in Fabry disease using unbiased quantitative validated morphometric approaches with functional and imaging correlations. These studies will substantially improve our understanding of the pathophysiology of cardiovascular and renal complications in Fabry and can introduce new approaches to quantify treatment response in cardiomyocytes and arteriol smooth muscle cells, with potential application in clinical trials and at the bedside. In addition to these histomorphometric studies, we propose to study autonomic dysfunction, a common complication in FD patients that is not well characterized, and the effect of ERT on this complication. The novel nature of this study lies in the analysis of tissues samples in a heretofore unused method that correlates tissue analysis with medical data to make determinations of kidney, cardiac, and skin tissue damage in Fabry disease.
University of Washington
Seattle, Washington 98195-4550
Recruiting
6730: Lysosomal Disease Network Longitudinal Study of Fabry Disease
This proposal aims to study the natural history and ERT effect on cardiac and vascular tissue in Fabry disease using unbiased quantitative validated morphometric approaches with functional and imaging correlations. These studies will substantially improve our understanding of the pathophysiology of cardiovascular and renal complications in Fabry and can introduce new approaches to quantify treatment response in cardiomyocytes and arteriol smooth muscle cells, with potential application in clinical trials and at the bedside. In addition to these histomorphometric studies, we propose to study autonomic dysfunction, a common complication in FD patients that is not well characterized, and the effect of ERT on this complication. The novel nature of this study lies in the analysis of tissues samples in a heretofore unused method that correlates tissue analysis with medical data to make determinations of kidney, cardiac, and skin tissue damage in Fabry disease.